首页 | 学院概况 | 师资队伍 | 党建工作 | 本科生教育 | 研究生教育 | 教学科研 | 学生工作 | 招生就业 | 下载中心 
上方图片
师资队伍
上方图片
电气与新能源实验中心

顾俊

讲师/研究生/博士   研究方向:信号处理与故障诊断、电磁检测  联系邮箱:gujuncumt@163.com

顾俊,男,研究生、博士、讲师。汉族,江苏盐城人,工学博士,讲师。毕业于中国矿业大学机电工程专业,获工学博士学位。主要从事旋转机械的故障诊断及钢丝绳的无损检测研究。目前以第一作者/通讯作者发表SCI学术论文7篇,相关工作已发表在Structural health monitoring、Measurement等国际学术期刊。参与国家重点研发计划项目1项。


代表性成果:

[1]  A novel fault diagnosis method of rotating machinery via VMD, CWT and improved CNN[J]. Measurement, 2022, 200: 111635.(一作,IF:5.2)

[2]  An optimized variational mode decomposition method and its application in vibration signal analysis of bearings[J]. Structural health monitoring, 2022, 21(5): 2386-2407. (一作,IF:5.7)

[3]  Studies of filtering effect on fault diagnosis of spindle device in hoist[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2021, 63(6): 348-356. (一作,IF:1)

[4]  An improved complementary ensemble empirical mode decomposition method and its application in rolling bearing fault diagnosis[J]. Digital Signal Processing, 2021, 113: 103050. (一作,IF:2.9)

[5]  Compound fault diagnosis and identification of hoist spindle device based on hilbert huang and energy entropy[J]. Journal of Mechanical Science and Technology, 2021, 35: 4281-4290. (一作,IF:1.5)

[6]  Fault diagnosis of spindle device in hoist using variational mode decomposition and statistical features[J]. Shock and Vibration, 2020, 2020(1): 8849513. (一作,IF:1.2)

[7]  A quantitative recognition method based on VMD, CNN, and SVM for detecting wire rope breakage damage inside elevator steel belts[J]. Structural Health Monitoring, 2025: 14759217241312938. (二作,通讯,IF:5.7)




上一条:唐影